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Abstract-A method has been developed for theoretical computation of the integrated thermat 
time~onstant of enclosures, hitherto unsown. The enclosure may consist of any number of different 
types of composite walls, roof and goor, whether all exposed or some unexposed. It may contain any 
other internal mass such as furniture. The enclosure may be ventilated as well. It is also possible to 
take into account the indoor radiation exchanges between the internal surfaces of the enclosure 
separately. This makes easy, the assessment of the thermal characteristics of the entire enclosure in 

terms of a single parameter. 
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NOMENCLATURE 

surface area perpendicular to the 
heat flow path [ms]; 
volumetric heat capacity of air 
[kcaljma degC] ; 
shape factor; 
emissivity factor; 
number of air changes per hour 
[J/J& 
conductance or, surface heat 
transfer coefficient [kcal/ma h 
degC1; 
volume [m3] ; 
internal heat source [kcaJ/h]; 
capacitative admittance of indoor 
air [kcal/h degC]; 
average convective admittance for 
the internal surfaces [kcaljh 
degC1; 
average surface admittance for the 
internai surfaces combining the 
effects of radiative and con- 
vective exchanges [kcal/h degC]; 
average radiative admittance for 
the internal surfaces [kcal/h 
de&l ; 
emissivity of internal surfaces; 
convective film heat-transfer con- 
ductance [kcal/ms h degC] ; 
thermal conductivity [kcaljm h 
degC1; 

1, thickness [ml; 
PT Laplace transform parameter; 
I, temperature [“Cl; 
x, space co-ordinate measured along 

the width of the wall fabric; 
A’, B’, & 
111, % L, constants defined in the text; 
E, E G, H, 

elements of the wail transmission 
matrix defined in the text; 
thermal diffusivity [ma/h]; 
Stefan-Boltzmann Constant 
[kcal/ma h degK4] ; 
time [h] ; 
roots of polynomials occurring in 
the text; 
temperature response function of 
the indoor air due to unit step 
change of outdoor temperature 
EdegCl ; 
= l/k/3; 

= VTPIW. 

INTRODLJCTION 
THE IMPORTANCE of the concept of thermal time- 
constant of a building fabric in assessing its 
thermal characteristics, particularly when the 
fabric is exposed to conditions of unsteady heat 
flow, has already been brought out by the 
author [l, 2, 31. While studying the problems of 
cooling of heated buildings, B~~kmayer [4] used 
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this concept of thermal time-constant-a simple 
ratio of steady-state terms, for determining the 
thermal characteristics of individual building 
elements. Recently, Pratt and Ball [5] has shown 
from exact analytical considerations that both 
for homogeneous and multilayer composite 
building elements, Bruckmayer’s thermal time- 
constant explains almost accurately, the transient 
heat-flow phenomenon under some simplified 
boundary conditions. Very recently, Warsi and 
Choudhury [6] have also worked out thermal 
time-constant values of a few two and three 
layered building elements from considerations of 
transient thermal reponse of buildings. 

All these above investigations were directed 
towards finding the thermal time-constant values 
of individual building elements forming a wall 
of an enclosure having all the walls of similar 
construction and all exposed to identical ex- 
citations. It has been experimentally found [3] 
that there exist substantial indoor thermal 
radiative exchanges between the various ele- 
ments of an enclosure. Moreover, buildings 
usually have roofs, walls and floors of different 
construction. As such, what was precisely 
needed was an integrated thermal time-constant 
of the entire enclosure. This integrated thermal 
rime-constant should cover any complex struc- 
ture of different types of homogeneous or 
multilayer constructions, the effect of various 
aspects such as the introduction of internal mass 
and ventilation and the effect of inclusion of the 
indoor inter-surface radiation exchanges. This 
paper presents a method for the computation of 
an integrated thermal time-constant of en- 
closures including the above variables by first 
obtaining theoretically the transfer function of 
the systems. 

THEORETICAL 

Wall transmission matrix 
The one dimensional heat-conduction equa- 

tion for a homogeneous rectangular wall fabric 
of uniform thickness and with the assumption 
that the heat losses at the edges are negligible, is 

a 1 at 

3x2 a 3.7 
(1) 

where the temperature, t = t(x, T) is a function 
of the space co-ordinate, x and time 7. 

The initial and boundary conditions are, 

t = 0 at 7 = 0 and 0 .< x <I, 

t = to at T > 0 and x = 0, 

t = tl at Q- > 0 and x =I. 

Representing the Laplace transform of the 
various quantities mentioned above by the 
corresponding capital letters, such as, 

L t (x, T) = 7 t (x, T) e-pr dT = T (x, p), 
0 

equation (1) is transformed into 

:a T (x, P) = (~/a) T (x, P). 

The solution of equation (2) will be as 

T (x, p) = A; efi5 + Ai e-/1.2 

where /3 = l/(p/a) 

(2) 

(3) 

With the help of the initial and boundary 
conditions and considering the following basic 
relationship 

-k ;;; T (x, p) = H (x, p) (4) 

where H (x, p) is the Laplace transform of heat 
llow at any point x, and further denoting 

H = HO at x -0 and 7 10 

H = Hl at x = 1 and r > 0 

the constants (4; and Ai) may be determined 
and the solutions for Tl and Hl are obtained as 
follows. 

Tz = To cash /3l - Ho20 sinh /3f (5) 

HZ = HO cash PI - (To/ZO) sinh p/ (6) 

where ZO = l/k/I. 
Equations (5) and (6) may be represented in 

the matrix form as, 

Tl 
[ 1-L cash /31 -ZO sinh /31 To 

- 
Hz -( l/Zo) sinh flZ cash pf I[ 1 . Ho 

(7) 

On matrix inversion the following is obtained, 

cash /31 ZO sinh /3E Tl 
(I/Zo) sinh ,N cash /31 I[ I . Hz @) 



The square matrix containing the hyperbolic 
functions in the above equation (8) is called the 
wall transmission matrix. For a fabric having 
negligible heat capacity (such as a stagnant air 
layer), the transmission matrix reduces to 

the transmission matrix (8) can be expanded in 
polynomials of p as follows : 

cash /31 = 1 + (!a/24 p + (l/6) (12/2u)apa 

1 R 

[ 1 0 1 

+ (l/90) p/243 p3 + . . . 

20 sinh /I1 = (Z/k) [I + (l/3) (Za/2u) p 

+ (I/30) (12/2a)2 p2 
+ (l/630) (12/2a)3 p3 + . . .] 

(I/Zo) sinh /3I = (2k/l) [(fa/2u) p 
For a composite wall having multilayered 

fabrics in series, the overall wall transmission 
matrix can be obtained by multiplying the indi- 
vidual transmission matrices of the fabrics in 
various layers following regular order along the 
positive direction of the x-axis as follows: 

where the square matrix in the left-hand side of 
equation (10) represents the overall trans- 
mission matrix of the composite wall whereas the 
square matrices on the right-hand side repre- 
sent the individual transmission matrices of the 
fabrics in the various layers along the positive 
direction of the x-axis. The elements A, B and 
C represent the corresponding elements of the 
square matrix in equation (8). Usually the con- 
tact resistances between the various layers are 
neglected. 

If the fabric is moist and it is assumed that the 
moisture is distributed along the width of the 
fabric in a regular manner, then a and k of the 
material will be a function of the space co- 
ordinate, x, the nature of which could be de- 
termined from empirical relationships. In that 
case, the fabric may be considered to be consti- 
tuted of different layers having constant a and k, 
in analogy to the lumped systems. 

In equation (S), TO, HO and Tl, HZ represent 
the temperatures and heat flows at the respective 
surfaces. If it is required to consider the tempera- 
tures of the fluid (ambient air or sol-air tempera- 
ture etc.) in contact with a surface, the fluid 
film should be taken as a layer of zero heat 
capacity and the square matrix (9) should be used 
in the respective locations. In that case, the 
overall wall transmission matrix will include the 
surface films. 
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(11) 

(12) 

+ (l/3) (1”/2a)” pa 

+ (l/30) (12/2a)3 p3 + . . .] (13) 

It is thus possible to express each element of 
the wall transmission matrix in terms of a 
polynomial in p. The degree of the polynomial 
in each case will be m times the number of layers 
in the multilayered panels; m being the highest 
degree of p taken in the above expansions 
(11-13). The value of m will be dependent on 
the number of terms that would be required in 
the above expansions to attain a certain degree of 
accuracy. Expansions of similar nature have also 
been mentioned by Stephenson [7]. 

Thermal-circuit representation of an enclosure 
The mechanism of heat transmission and 

various heat exchanges in an enclosure can be 
very well represented by a thermal circuit 
originally due to Nottage and Parmele [8], and 
whose application in the prediction of indoor 
climate has been reviewed by the author [9]. 
The heat is transmitted indoors through the 
exposed walls (including roofs and floors, if 
applicable) of the enclosure whose surface 
areas are large compared to the thickness. The 
heat flow paths through the exposed walls can 
thus be treated as passive quadripoles. For 
unexposed internal walls, the mid-plane (at half 
the thickness) can be taken as adiabatic planes 
and as such, these also can be treated as passive 
quadripoles. The assumptions to be made are as 
follows: (a) the walls, whether exposed or 
unexposed, have isothermal surfaces indicating 
one dimensional heat flow; (b) the air in the 
enclosure has uniform temperature; (c) the 
thermophysical properties of materials and of the 
surfaces are constant and time-invariant. 

For operational conveniences, the elements of Thus equation (10) for the overall wall 
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(Connections ot dot points only) 

FIG. 1. Thermal circuit diagram using quadripoles for conduction paths of an enclosure. 

transmission matrix could be used here for the 
conduction flow through the fabrics. The radi- 
ative heat exchanges between the various 
surfaces (i, j) and the convective exchanges from 
these surfaces (i or j) to the indoor air (a) are 
represented by radiative and convective ad- 
mittances defined by 

Convective admittance, Yfa = &(A& 

Radiative admittance, Ytif = Fe F&4& 

4u(tmean + 273.16)3 

where Fs = el . ez. 
The capacitative admittance of the indoor air 

is defined by 

Yao = vc’p. 

Let the enclosure (having six enclosing walls 
for simplicity) be represented by a thermal- 
circuit, Fig. 1, where each box represents a wall 
of the enclosure (including roof and floor) and is 
being treated as a passive quadripole. Let the 
indoor air temperature be represented by Ta and 
the temperatures and heat flows at the various 
surfaces be represented by T and H with proper 
subscripts in the transformed plane. Let TE with 
the corresponding dashed subscripts represent 
the external air or sol-air temperature. 

The energy equation which is to be considered 

at each surface nodes, say b, of the thermal- 
circuit (Fig. 1) is 

n-1 

ffb = Yba(Tb - Tcz) + x Ybj (Tb - Tj) (14) 
j=l 

where j refers to other (n - 1) internal surfaces 
in the enclosure. The right-hand side of the 
equation (14) is to be equated with 

[(TEb’/F) - (Tb E/F)] 

for exposed elements and with (-TbG/H) for 
internal unexposed elements. TEi,/ is the corre- 
sponding external sol-air or air temperature, or 
in brief the excitation temperature. E, F, G, and 
H, the elements of the wall transmission 
matrices, should include the film air layer for the 
outer surfaces (equation IO). 

Further the energy equation to be considered 
at the node a representing indoor air, is 

5 (A& &z(Tj - Ta) + W = 0 (15) j=. 1 

where W, the internal heat source in the en- 
closure, may exist due to occupants, lighting, 
ventilation (sources or sinks), or direct solar 
irradiation through transparent openings; W 
may be constant or time dependent. 

Thus we get (n + 1) simultaneous linear 
equations in terms of temperature, modified 
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admittances (including transmission matrices for 
the fabrics), internal heat sources etc., and where, 
there are n isothermal surfaces (whether 
exposed or unexposed) in the enclosure. 

If further, it is assumed that all the external 
surfaces of the enclosure are exposed to the same 
excitation temperature, TE and W is only due 
to the ventilation of the outdoor air, the follow- 
ing expression is obtained: 

and one or more response functions. Let 
r = r(7) be a particular response function and 
d = d(7) be the particular driving function. Let 
all other driving functions be set to zero. Let 
the system have no residual effect from any 
earlier driving excitations. Let R(p) be the 
Laplace transform of the normal response and 
D(p) be the Laplace transform of the single 
driving function causing the response. Then let 

-NVC’ Y ab Y ae Y ad Y ae Y af Y w 

-(A,/F)b --z Y; Ybe Ybd Ybe ybf YW 

-_(As/% Ycb -x Y; Y& Y ce Y cf Y cl7 

-(A,/% Ydb ydc -Iz Y; Yde ydf ydg 

-_(AsIF)e Yeb yet Yed --x Y: Yef Yes 

-(AsIflf Yfb Yfc yfd Yfe -rd Y; Yfg 

Ta k--_(AsIF)g 
TE --r, Y; 

Yba 

Y ca 

Yda 

Y ea 

Yfa 

Yf7a 

Ygb yvc Ygd Y ge Y!7f --z Y; -__ 
(16) Y ab Y ac Y ad Y ae Y af Y ag 

-x Y; Ybe Ybd Ybe ybf YW 

Y cb --r, Y; Ycd Y ce Y cf Y cg 

Ydb ydc --IFI Y; Yde ydf ydf 

Y eb Yet Y ed --C Y: Yef Y eg 

Yfb Yfc Yfd Yfe --c Y; Yrs 

Ygb Yge Ygd Yge Yf7f -c Y; 

where X Y; = (AJZ/F)j -I- Yja $ x Yjr 

and I; Yi = Yao + NVC’ + x Yal 

For an unexposed internal wall (say i) such as 
partition wall (including furnitures) in an en- 
closure, the expression -(A,/F)z in the first 
column of the numerator in the above equation 
(16) should be treated as zero. Further, the 
expression to be taken for 2 Y; in both the 
numerator and the denominator (equation 16) is 

C Yd’ = (AsG/H)a + Yia + x YU 

Transfer function 
Let a time-invariant linear system be con- 

sidered having one or more driving functions 

TFO = N.PYWP) (17) 

where TF(p) is called the transfer function of the 
system with respect to r(T) and d(~) but which is 
independent of D(p). 

In the equation (16), both Ta and TE are the 
Laplace transforms of the response and excita- 
tion temperature functions respectively. Hence, 
the ratio of the two, i.e. equation (16) is the 
transfer function of the entire enclosure which 
includes the integrated effect of the intersurface 
radiation coupling, the surface-air convection 
coupling. It also includes the effect of intro- 
duction of internal mass and ventilation in 
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addition to the transmission and storage 
characteristics of wall fabrics of homogeneous or 
composite construction consisting of any num- 
ber of layers. 

With the simplifying assumptions, that the 
convective and radiative admittances for all the 
internal surfaces of exposed or unexposed 
elements in the enclosure are similar and equal to 
P, and F, respectively (i.e. say an enclosure 
taken as a cube having similar surface finishes), 
the resulting transfer function will be, 

If in equation (19), the thermal capacity of the 
indoor air, which is comparatively very small, is 
neglected, the resulting expression for the 
transfer function would be the same as that 
which could be obtained starting with the 
equations used by Muncey [lo]. 

Let us consider a very simple case of an 
unventilated enclosure (a cube) having no 
internal mass and with all the six walls of 
similar construction. When such an enclosure is 
exposed to a single excitation on all the external 

Further, if the indoor intersurface radiation 
exchanges are neglected as a separate entity 
(i.e. y,. = Yi, = Yfe = 0), the transfer function 
gets simplified to 

rjy+) = .k______ 

n ( P’)2 
(19) 

r;r;- -2, 
2 x Yj 
j=l 

The use of the surface admittance 9: assumes 
that the mean radiant temperature of the indoor 
environment and the indoor air temperatures are 
similar-an assumption which may not be al- 
ways true. In both the expressions (18 and 19), 

surfaces, it would not be unrealistic to consider 
that the mean radiant temperature of the indoor 
environment and its ambient air temperature are 
similar. Hence, the assumption of the surface 
admittance (Y:) is reasonable. The transfer 
function of this enclosure is then given by 

If further, Yao is neglected the transfer 
function is reduced to (l/E). 

In the above enclosure, if one of the walls is 
treated as an internal (partition wall) element, and 
the use of Pi is retained, the transfer function of 
the enclosure will be 

“(‘I = (Yao + 6 r;) (A& + y;F) (A,G 

5 Asy; (A,G + P;H) 

+ P;H) - ( P;)z [5P(A,G + P:H) + H (A& + F&j 

(21) 

internal mass, if any, is to be treated as stated In general, the expression of the transfer 
earlier. It should however be noted that in function, TF(p), may be written as a ratio of two 
equation (18), any element other than the polynomials in p. For unventilated enclosures 
element b is to be treated as internal mass. (N = 0), the degree of the polynomial in the 
Further, equation (19) is applicable to an denominator will be (mL + 1) where m is the 
enclosure, which is not necessarily a cube. highest degree of p taken for the expansions of 
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the elements of the transmission matrices, 
(equations 11-13) and L = LO + Lt; LO and l;~ 
being the total number of layers in different types 
of exposed and internal (unexposed) walls re- 
spectively. The term walls, however, includes 
roofs, floors, and also furniture. If in the 
enclosure, more than one of the exposed walls 
are of identical construction, only one of these 
walls is to be considered for determining the 
value of Lo. The internal unexposed walls should 
be treated similarly. The degree of the polynomial 
in the numerator will be less than (mL + I), the 
extent of which will be dependent on the number 
of identical exposed or unexposed walls. But if 
in addition, the enclosure is ventilated .(N f 0), 
the degree of the polynomial in both the 
numerator and the denominator will be the 
same (mL + 1). It may be pointed out that the 
inclusion of ventilation or internal radiative 
admittances do not alter the degree of the 
polynomials themselves. If the thermal capacity 
of the indoor air is neglected, the degree of the 
polynomials is reduced by one. The coefficients of 
the two polynomials can be obtained from 
equation (16). These are dependent on the 
thickness, thermal diffusivity and thermal re- 
sistances of the fabrics (assumed homogeneous) 
in the individual layers of the multilayer walls 
and their surface areas. These are also de- 
pendent upon the surface conductances of the 
outer surfaces and upon the surface admittances 
or the radiative and convective admittances for 
the internal surfaces. 

Once the integrated transfer function W(p) of 
an enclosure is determined as detailed above, the 
response of the enclosure for any given external 
excitation or forcing function may be obtained 
by first multiplying the TZ-Q) with the Laplace 
transform of the excitation function and there- 
after obtaining the inverse Laplace transform of 
the end product, using partial fraction expansion. 

In the present work, a “unit step function” has 
been used as a forcing function. The temperature 
response function [&(T)] of the indoor air in the 
enc1osure due to this unit step external excitation 
is 

?n 
&(7) = 1 - C Kt exp (--I/W) 

I=1 
(22) 

where 1,4( are the roots of the polynomial in p in 
the denominator of the l/p multiplied transfer 
function, and Ki are the constants derived in the 
partial fraction expansions required as above. 
The time required by the response function 
[&(T)] of the enclosure after the external ex- 
citation has been applied, to attain 63.21 per cent 
(=l - l/e, where e is the base of natural 
logarithm) of the steady state value is defined as 
the thermal tjme-constant of the enclosure. 

It is seen that the main work of computation 
is to obtain the partial fractions of the ratio of the 
two resulting polynomials. This in turn would 
mean the determination of the roots of (ML + 1) 
degree polynomial in the denominator. This has 
been done by ~uller’s method [I 1] using a 
digital computer. 

Thus, once the integrated thermal time-con- 
stants of enclosures are worked out, an accurate 
assessment of the comparative thermal character- 
istics of various enclosures subjected to any 
climatic stress is possible by one simple para- 
meter, which was not feasible earlier. 

NUMERICAL EXAMPLES AND DISCUSSION 

Some simple cases have been worked out to 
illustrate the use of the method developed above. 
It should be noted that the solution for the 
response function, as obtained (equation 22) 
would be strictly true for large times. Since the 
thermal time-constant of any fabric is always 
greater than its (Z2/2a) and considering the 
numerical values of (Z2/2u) for the range of 
materials used in buildings, an approximation in 
the expansions of the wall transmission matrix 
elements (equations 11-13) by neglecting the 
terms containing powers higher than 2 of 
(P/2u) is expected to give thermal time-constant 
values of an accuracy which should be sufficient 
for most of the engineering applications. In the 
following numerical examples, a value of 
m = 2 has, therefore, been taken. 

The thermophysical properties of the different 
materials and surfaces are given in Table 1. The 
details of the enclosures with the various 
boundary conditions together with the integrated 
thermal time-constant values are presented in 
Table 2. The thermal time-constant values have 
been obtained by solving the transcendental 
equations [C&(T)] for 63.21 per cent response by 
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Table 1. Themophysical properties of materials and surfaces 

Brickwork 
Materials 

Cement concrete 

k = 0.833 kcal/m h degC 
a = 2.36 x 10-s m2/h 

k = 1.711 kcal/m h degC 
a = 3.35 x 10-3 m”/h 

Air C’ = 0.2806 kc&/m3 de& 

Surfaces 

I/& = 19.5315 kcal/m”h degC (outer surface heat-transfer coefficient) 

yc = 3.4177 As kcal/h degC 

yF = 0.9277 As kcal/h degC (for an average temperature of 29.5”C) 

& = 0.2, both for adjacent and opposite planes [12] 

F, = (0,92)2 = 0.85 

yc’ = Fc + AsFd40(fmean + 273*16)3, (since F, = 1) -= 8,056 A, kcaljh degC (for an average temperature of 
29.5”C) 

Newton’s method using a digital computer. time-constant of an enclosure (case Nos. 3 and 
These may also be obtained graphicaIly. 4). 

Thermal time-constant values of 22-86 cm 
thick and Il.43 cm thick brick masonry walls 
(case Nos. 1 and 2) as computed by Bruckmayer’s 
1441 steady-state method are also included in 
parenthesis in Table 2, for comparison. As stated 
earlier, it has been reported [5], based on exact 
mathematical analysis that the thermal time- 
constant as obtained from the transient response 
of a sealed enclosure with all the six surfaces 
identical and all exposed to the same external 
excitation and further containing no internal 
mass is almost identical to the time-constant of 
a similar element obtained from the above 
mentioned steady-state method. It is seen (Table 
2) that the time-constant values derived by the 
present method under the above idealized 
conditions (case Nos. 1 and 2) are within two per 
cent of those obtained by Bruckmayer’s steady- 
state method; however this error becomes 
negligible when in the present method of compu- 
tation the values of m are taken as 3, 4, 5 or 
more. Hence the use of the assumption of 
tn = 2 for most of the engineering applications is 
justifiable as the maximum error is within two 
per cent only. It is therefore expected that under 
generalized boundary conditions, this method 
will yield results of comparable accuracy. 

The neglect of the thermal capacity of the 
indoor air mass as has been done by Muncey 
[lo] and Warsi and Choudhury 161 causes an 
insignificant error in the time-constant value of 
the order of O-7 per cent in very small enclosures, 
0.305 m cube (say a small edge insulated thermal 
model). The magnitude of the error is increased 
to the order of 1% per cent for regular rooms 
(3*05 m cube). This error is also small but for 
larger halls (30.5 m cube) it is of the order of 
8.X per cent which is not negligible (case Nos. 4, 
6, 7, and 8). 

It is clearly seen (Table 2) that the increase 
of internal mass increases the integrated thermal 

In order to include the effect of indoor inter- 
surface radiation exchanges, the radiative and 
convective admittances of the indoor surfaces 
have been considered individually in case No. 5. 
It is seen that (case Nos. 4 and 5) the effect of 
this treatment is only of the order of 1% per cent 
on the time-constant values. This is perhaps due 
to the simplified assumptions made for the 
constancy of various admittances, particularly of 
the convective surface admittances irrespective 
of orientation. This may also be attributed to the 
conventional procedure adopted for combining 
the effects of radiative and convective admit- 
tances to form an overali surface admittance 
assuming the mean radiant temperature of the 
indoor environment similar to its ambient air 
temperature. In order to correctly assess the 
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Table 2. Integrated thermal time ~o~ta~t~ o~varivu~ enclosures under different boundary conditions 
p--------p=_- 

Case 
No. 

Details of enclosure (cubical) Internal Internal Internal air Ventila- Integrated 
volume/ mass per mass per tion, thermal 

exposed wall unit area of unit area of number time- 
area exposed exposed of air constant 
(m) wall wall changes of the 

(kcal/ Wall per hour enclosure 
m2 degC) m2 degC) (J/h) th) 

1. 

2. 

3. 

4. 

5.* 

6. 

7. 

8. 

9. 

10. 

11. 

22,86 cm thick brick masonry en- 
closure with all the six walls 
exposed 

11.43 cm thick brick masonry 
enclosure with all the six walls 
exposed 

An enclosure having 11.43 cm 
thick brick masonry for the five 
exposed walls. Sixth wall of 
5.08 cm thick dense cement 
concrete treated as an internal 
partition wall 

An enclosure having 11.43 cm 
thick brick masonry for the five 
exposed walls. Sixth wall of 
30.48 cm thick dense concrete 
treated as an internal floor 

Same as 4 

Same as 4 

Same as 4 

Same as 4 

Same as 4 

Same as 4 

Sameas 

- 

- 

0.06 1 

O-61 

6.1 

0061 

0.61 

6.1 

nil 

nil 

2.596 nil nil 5.72 

1.5576 nil nil 702 

15576 nil nil 7.13 

15.576 0.0171 nil 1.07 

15576 0.171 nil 7.13 

1.5~576 1.71 nil 764 

15576 nil 4 686 

15.576 nil 4 5.71 

15576 nil 4 1.78 

nil 

nil 

nil 

nil 

15.5 
(15.2) 

(z) 

_I~ -..- - 
* In case No. 5 only, yc and 13 have been used separately. In all other cases PC,’ has been used neglecting yr as an 

individual entity. In cases Nos. l-5, the third col. has been left blank as the same has no effect on the last col. The time- 
constant values shown in parenthesis for case Nos. 1 and 2 are from steady-state method of Bruckmayer [4]. 

contribution of the indoor intersurface radiation 
exchanges, a detailed study towards the exact 
behaviour of the various surface admittances are 
essential prerequisites. 

Ventilation has been introduced in three cases 
(case Nos. 9-11). It is seen that the ventilation 
causes a reduction of the time-constant value, 
which is a logical expectation. It is further ob- 

served, on comparison with case No. 4, that a 
particular air-change rate of ventilation (N = 4) 
reduces the time-constant values by 2.3 per 
cent for very small enclosures (0,305 m cube). 
For regular room dimensions (3.05 m cube), the 
reduction is 18.7 per cent and it is of the order 
of 74.6 per cent for large hall dimensions 
(30.5 m cube). 
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CONCLUSION 2. 

The method developed in this paper predicts 
theoretically the integrated thermal time- 
constant of an enclosure as a whole, which was 
not feasible earlier. This method is capable of 
taking into account, an enclosure with different 
types of walls, each composed of any number of 
layers; whether all those walls are exposed or 
some are unexposed. In addition, it takes into 
account, the introduction of any other internal 
mass and ventilation. It also includes the effect 
of indoor intersurface radiative exchanges in the 
enclosure. The method is comparatively simpler 
considering the large number of parameters, it 
can handle. Lastly, this method, which has been 
found to be capable of predicting precisely the 
integrated thermal time-constant of enclosures 
for simple boundary conditions is expected to 
yield reliable results for generalized boundary 
conditions including all the above variables, and 
which should be sufficiently accurate for most of 
the engineering applications. 

3. 

4. 

5. 

6. 
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R&urn&-Une methode pour le calcul theorique de la constante de temps thermique integrte des 
enceintes, grandeur inconnue jusqu’alors, a et6 exposee. L’enceinte peut consister en un nombre 
quelconque de murs composites de differents types, dun plafond et d'un plancher, soit, tous exposks, 

soit,avec quelquesparois nonexposkes. Elle peutcontenirn'importequelle masseinterne telle que des 
meubles. L’enceinte peut &tre Bgalement ventilee. II est possible aussi de tenir compte des &changes 
interieurs de rayonnement entre chaque surface interne de l’enceinte. Ceci rend facile l’evaluation des 

caracteristiques thermiques de l’enceinte tout entitre en fonction d’un parametre unique. 

Zusammenfassung-Fur die theoretische Berechnung der bisher unbekannten gesamten, thermischen 
Zeitkonstante von Hohlrlumen wurde ein Verfahren entwickelt. Der Hohlraum kann aus einer 
beliebigen Zahl von nach verschiedenen Arten zusammengesetzten WPnden mit Dach und Boden 
bestehen, wobei sich alle oder such nur einige Wande instationar erwarmen. In ihm kann sich jede 
andere Masse wie z.B. Mabel befinden. Der Raum kann such beliiftet sein. Ebenso ist es mijglich, 
den Strahhmgsaustausch im Inneren zwischen den Wanden des Raumes getrennt mit einzubeziehen . 
Dies erleichtert die Abschltzungder thermischen Kenngrossen des ganzen Hohlraumes und ergibt Aus- 

driicke mit einem einzigen Parameter. 

~HHOTa~,WI-~a3pa6OTaH HOBbIt MeTOE TeOpeTMYeCKOrO PaWETa MHTWpaJIbHblX Bp‘ZMeHHbIX 

KOIICTaHTOrpaH(AeHM~.OrpaHEAeHIle MOWeTCOCTORTb M3 nto6oro YIlCJIaMHO~OCJIOtHbIXCTeH, 

nonaH nOTOnKapanJIn'lHbIXTHnOR, npll9eM BCe OHI MOryT 6bITb nOJJBepHteHb1 BO3J@kTBHIO 

Hapy?KHOrO BO3Jo'Xa HJIYI He COnpHKaCaTbCn C HHM. OHO MoweT CoAepHtaTb nIo6He BHYT- 

peHHMe MBCCbI, HanpnMep, Me6eJIb. OrpaPKAeHAe MOHEeT 6bITb TaKFKe BeHTHJIEipj'eMbIM. 
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MO~HO TaKWe J'WfTbIBaTb JIyWCTbIti TeIIJIOO6MeH MeHcAJ' BHJ'TpeHHHMM IIOBepXHOCTHMH 

OrpamAeHm. 3TO o6nersHT HaxomAeHHe TeIIJIOBbIX xapaKTepmTm Bcero OrpamAeHm c 

IIOMOUbIO OAHOI'O napaMeTpa. 


